
Why Java Isn’t Smalltalk: An Aesthetic Observation

Bad Movie
I watched a bad movie the other night. It doesn’t matter which one; we’ve all seen bad movies, and we recognize one
when we see it: one in which the acting is too broad, the lines are repetitive, sequences that are supposed to be
humorous or moving drag on too long until you either fidget or reach for the fast-forward button on the remote
control, and the sight gags are obvious and overdone. These are movies that are, in short, aesthetically unpleasing.

Furthermore, the running critique in the viewer’s head as s/he catalogs yet another of the movie’s flaws serves to
distract from the movie’s original purpose: its plot. When the movie ends, the viewer may not even remember the
plot, but will certainly remember all of its aesthetically unpleasing elements!

To the experienced Smalltalker, Java is like a bad movie. It, too, is aesthetically unpleasing. Most of us have been
striving all of our Smalltalk careers for some ephemeral quality we call “elegance” in coding and design. It is a
quality that could also be called “aesthetics.” We do not seek this quality because we are all really artists in
programmer’s clothing (though some of us are!), but because our experience has shown us that programs that are
more elegant are easier to create, to understand, and to maintain than those that are not.

Elegance – What Is It?
Though we talk about elegance a great deal in the Smalltalk community, and we are quick to recognize elegant
designs when we see them, we very rarely stop to define exactly what we mean by the word. This is probably
because it is a difficult word to define – even my Random House College Dictionary (revised edition) wasn’t much
help. It’s definition of “elegance” was rather vague, but it did lead me through a chain of synonyms which I believe
capture the essence of what we as programmers mean when we talk of elegance:

Elegance: “something elegant; a refinement”
Refine: “to bring to a fine or a pure state; to purify”
Pure: “free from anything of a different, inferior, or contaminating kind…unmixed”

Simplicity in Smalltalk
At its core, then, elegance is captured by purity, sameness or simplicity. These are qualities which are inherent in the
design of the Smalltalk language – in its syntax, in its short lists of reserved words and operators, and in its basic
tenet that “everything is an object.”

When we teach beginning Smalltalkers, we tell them that its syntax is one of the simplest of all programming
languages, consisting of the form:

Figure 1: Smalltalk Syntax

All actions in Smalltalk are realized by sending messages to objects, and all messages return an object. Since
everything in Smalltalk is an object, everything understands some set of messages. Furthermore, since even classes
in Smalltalk are objects, even the creation of new instances is achieved by sending messages to objects.

We further teach our students that Smalltalk has only five reserved words (true, false, nil, self and super) and two
operators (assignment and return) – short lists to remember. Other than these reserved words, anything else can be

declared as a variable. Other than these two operators, everything else they encounter will be either an object or a
message, following the same rules of syntax as all other objects and messages.

This is simplicity, purity, refinement. It is elegance. It is aesthetically pleasing.

Complexity – what is it in Java?
A quick look at Java shows that it is not nearly as simple. Its syntax is sometimes – but not always – object-
followed-by-message; its lists of reserved words and operators are long; methods don’t necessarily return objects; all
objects-like things are not necessarily objects; and all class-like things are not necessarily classes. Furthermore, data
and behavior hiding are subjective, exception handling is rigidly enforced, classes can be declared to either always be
superclasses or never become superclasses, and some objects may change the types of other objects in a way that
forces the programmer to change the types back.

Was That a Reserved Word I Saw You With Last Night?
The list of reserved words in Java 1.0 takes up half of a page in Java in a Nutshell. There are fifty-nine of them –
plus nine more reserved method names. These are long lists of words to remember to avoid using as variable names
and message names – much longer than Smalltalk’s single list of 5 reserved words.

When is a Java Object Not an Object?
Unlike in Smalltalk, everything in Java is an not object. There are “real” objects – those that inherit from the root
Object class, and primitive data types (integers, characters, floating point numbers, Booleans, etc.). The latter, since
they are not objects, cannot be sent messages, cannot serve as superclasses for other classes, and cannot have their
behavior redefined.

Among Java’s messages, not all return objects. As a side-effect of Java’s strong typing, the return type of a message
must be declared, and it can be declared to be an object type, a specific primitive data type, or nothing (void).

…Or a Message Not a Message?
While most of Java’s syntax consists of the form:

object.message();
there are notable exceptions to this rule. Instances, for example, are not created by sending messages to objects;
rather a reserved word, new, is used in conjunction with the name of the class which – for the purposes of creating
instances only – takes the form of a message name. And the new keyword comes before the “class/method name”,
rather than after it like other messages. Java’s “constructors,” as they are called, look like this:

new Classname();

Due, in part, to the existence of its non-object primitive data types, not all actions in Java are achieved through
message sends. Rather, there is a list of some forty-four operators that may be performed – some appropriate for one
or more subsets of the primitive data types, some for objects, and some for both. Since these are not messages, they
do not fit within the object.message() format; rather, they precede, follow, or fit between one or two operands.
Furthermore, they cannot be “overloaded” (applied to objects/types other than those defined for the language) – a
process we call “polymorphism” for their Smalltalk cousins.

Of Java’s operators, one of the most confusing is instanceof. Most of the operators are composed of one or more
special characters, which could serve to make them relatively easy to distinguish from messages, but instanceof, as a
collection of alphabetic characters, can appear to the uninitiated as a message. It is not; it must fit between two
operands like the other binary operators.

…Or a Class Not a Class?
This is only the tip of Java’s complexity iceberg. It gets worse. Not all class-like things in Java are really classes.
Some are interfaces and the two constructs behave differently: classes are extended, and interfaces are implemented.
While I will admit that the interface notion is a powerful one – and is certainly less complex than its C++ counterpart
(multiple inheritance) – it adds yet another complexity to the language.

Visibility Modifiers
In Smalltalk, data and behavior visibility are simply and consistently enforced: all data is private, and all behavior is
public. Some might claim that the latter, particularly, is an arbitrary language-design choice, and point out that
Smalltalkers have struggled to overcome the shortcoming of all behavior being public with either conventions in
method comments or tools that separate public methods from private ones. They will further argue that, even then,
the language fails us by still allowing any object to send the so-called “private” messages to our objects. All of this is
true. A quick look at Java’s visibility modifiers, however, will show that Smalltalk’s consistency in defining what is
always public and what is always private makes it a simpler language.

In Java, there are five visibility modifiers, all of which can apply to either data or methods (collectively called
“members” in the Java vernacular). The five modifiers are: public, “default” (also referred to as “package”),
protected, private-protected, and private. These modifiers determine which objects can directly access the data or call
the message – as well as which objects inherit the data or the method – according to whether the accessing or
inheriting object resides in the same package as the object from which it is attempting to access or inherit a member.

How the five visibility modifiers cut across the packages according to accessibility and inheritance would require a
three- or four-dimensional space to diagram (in order to map the modifier against the membership in a package
against whether access is allowed against whether inheritance is allowed) but I’ll attempt to describe it in words.
First the two easy ones: predictably, public members are accessible to every other object and inherited by every
subclass of the object, and private members are available only to the defining object. Private members cannot be
inherited, either by subclasses within the defining object’s package or those outside of the package. Protected
members can be accessed only by objects in the same package, but can be inherited by objects in other packages.
Private-protected members are accessible by no object other than the defining object, but can be inherited by
subclasses in any package. Finally, the default visibility (package), allows members to be inherited and accessed by
objects within the defining object’s package, but neither inherited nor accessed by objects outside the package.

Try-Catch
The Java compiler insists that any method that calls another method that throws an exception must either 1) handle
the exception or 2) declare that it, too, throws the exception (or, alternatively, the calling method could handle part of
the exception and throw the rest). While most Smalltalk dialects also provide exception handling, it is not in any way
enforced by the Smalltalk compiler. Exception handling is, by its very nature, a complex addition to a program that
requires the programmer to think about the implications of the actions of his object on a scope far outside that object.
This has the potential to break – or at least severely bend – encapsulation, since one object must know how another
object is implemented enough to know what exceptions it may throw and how it might handle those exceptions. The
Smalltalk programmer has the luxury of thinking about exception handling relatively late in the development process,
while Java forces the programmer to consider this complexity early – potentially, as often as with every method send.

Class and Method Modifiers
Not all classes in Java can become superclasses. Java allows a programmer to define a class or a method as “final.”
Final classes can never become superclasses, and final methods cannot be overridden. Later, if another programmer
thinks of a legitimate extension to a final class, s/he is out of luck. Rather than create a new subclass with all the
functionality of the superclass plus the new functionality, s/he must re-implement the entire class. Although most
programmers would probably not create new classes assuming they would never become superclasses, final classes
do appear in the language. Many of Java 1.1’s “wrapper” classes, for example – classes designed to allow primitive
data types to be “wrapped” in and treated as real objects – are declared as final.

Other Java classes must be superclasses. These are the classes declared as “abstract”. Abstract classes cannot be
instantiated. (This makes abstract classes like interfaces, which are by their very nature abstract – whoops! except in
Java 1.1, where interfaces can be instantiated, adding a layer of inconsistency onto another inconsistency….),
Furthermore, any class that inherits from an abstract class must either override all of the superclass’ abstract methods
and provide concrete implementations for those methods or (if it has even a single abstract method) must also be
declared abstract.

Methods in Java may also be “static.” Static methods are like Smalltalk’s class methods in that they cannot access
the class’ instance variables, but can refer to the class’ static variables (which are like class variables). The catch is
that static methods are also implicitly final, so they cannot be overridden.

These class and method modifiers, while making it explicit what can and cannot be overridden and/or subclassed, add
another complexity to the Java language.

Casting
Another obvious difference between Java and Smalltalk is the issue of static vs. dynamic typing. Both have their
strengths, and I won’t argue here that Smalltalk’s dynamic typing is somehow objectively “better” than Java’s static
typing. There does exist, however, at least one impact of Java’s static typing on the language’s complexity: the need
to cast objects into different types.

Some general-purpose Java classes, like its Vector class (Java’s version of OrderedCollection), take as arguments
objects of any Object type (i.e., any subclass of Object, which excludes primitive data types). In order to accomplish
this within the context of Java’s strong typing, the object being added to the vector must be cast to the highest point in
the inheritance hierarchy: the Object class. As a result of the upward cast, when the object is later retrieved from the
Vector, although it is still an instanceof the original class, it can only respond to messages defined for the Object
class. If the programmer needs to send the retrieved object a message defined for that object’s class, s/he must cast
the object back down to its original type. Not all casting is obvious. Upward casting (like to the Object class) is
implicit; downward casting must be explicit.

Impact of Complexity
Perhaps by now I’ve convinced you that Java is a more complex language than Smalltalk. So what? Big deal, right?
Aside from being aesthetically unpleasing to the Smalltalk programmer, is there any real, measurable impact of a
language’s complexity on a business’ bottom line? In a word: yes. There are two important consequences of this
complexity: 1) on training costs and 2) on programmer productivity.

A Juggling Act
G. A. Miller, in his 1956 paper The Magic Number Seven +/- 2, concluded that a person’s short-term memory is
limited to holding onto approximately seven unrelated ideas at a time. Beyond an approximate maximum of 9 ideas,
one or more items drop out of short-term memory to make room for the new idea.

At one time or another I think we have all, as programmers, experienced the sensation of feeling like a juggler,
keeping approximately seven “balls” (unrelated ideas or concepts) in the air (our short-term memory) as we attempt
to pull them together into a coherent whole. If a colleague walks up to your desk when you are in the middle of your
juggling act – even if he says nothing, even if the interruption is brief – the distraction is enough to cause you to let
most (if not all) of the balls fall to the floor.

The distraction, however, does not have to be external; it can be the result of having to figure out some sub-section of
your code in order to solve a larger problem. A C-programmer friend of mine says, for example, that he has to do
this every time he calls the printf() function. He has to go look up which special characters are used for which
purposes, and what the format of the string should be.

This is a mental process that could be called “subroutining” – something computers are very good at. Programming
languages are designed to put one context on the stack in order to switch to another context while a sub-section (a
subroutine) of the code executes.

The problem for humans is that our short-term memories do not contain stacks. As Miller shows, we have an
approximately seven-item “scratch pad”. When we switch contexts, all of those approximately seven things that we
were trying to relate to one another must be dropped on the floor in order to make room for another seven things from
a different context. If the context switch is of a short enough duration, it may be possible for us to catch the original
balls on the first bounce and reconstruct their relationships to each other in our short-term memories. Longer
duration context switches, however – one subroutine that leads to another and another and another – decrease the

possibility that the original seven ideas will be reconstructed in the same manner as they were originally. Putting the
seven balls back into the air in the same configuration as they were before the first interruption is an unlikely and
error-prone prospect.

The more complex a programming language is, the more frequent these context switches will be. For example, when
faced with a business problem to solve, the Smalltalker will ask the following hierarchy of questions:

 What is the
Object?

What is the
Message?

Is it an object I
already have?

Use that
object

Do I already
have the class
of the object?

Send new to the
class to create the
object.

Where should the
class exist in the
hierarchy?

Create the new
class as a
subclass of the
appropriate
superclass

Send new to the
class to create the
object.

Y
Y

Y
Y

N

N
Y

Is it a message
the object already
has?

Send that
message

Create the
message

Send the
message

Y
Y

N
Y

Figure 2: “What are the Object and Message?” Smalltalk Decision Tree

By contrast, the Java subroutining may look like this…

What is the
Object?

real

primitive

N

What is the
Object’s type?

Is it a real object
or a primitive data
type?

Is it an object I
already have?

Use that
object

Remember the
constructor
syntax

Should the class inherit
from a superclass or
implement an interface?

Where should the
class go in the
hierarchy?

Create the new
class as a
subclass of the
appropriate
superclass

Is the
superclass
abstract?

Implement all of
the abstract
methods, then…

Y

inherit

Remember the
constructor
syntax

interface

Which interface(s)
should I
implement?

Implement every
method in the
interface and…

Which operators
work with this
primitive type?

Do I already have
the class of the
object?

Use the new reserved
word with the class
name as a message

Use the new reserved
word with the class
name as a message

Declare a
variable of that
type

Is the variable
name
reserved?

Y Think of
another
name

Y

Y

N

Figure 3: “What is the Object?” Java Decision Tree

…and this…

What is the
message?

message

operator

N

Should it be a
message or an
operator?

Is it a message
the object already
has?

Is it a message I
can access?

Create a new
subclass (see
above)

Is the object an instance
of my own class or
someone else’s?

Is the message name I
want to use either
reserved or an operator?

Think of a new
message name

Add the message
and call it.

Y

Use the
operator

Y

Does it work for
this data type?

Is there a Math
function I can
use instead?

Now what????

Will this message
or operator change
the type of my
object?

Is the class of the
object extendable
or final?

Does the
operator exist?

Can I extend the
Wrapper class or is it
final?

Y Y Send that
message

extensible

final

mine

someone else’s

N

Y

N

Y

N

Y

Use that Math
function

Y

Can I wrap the
primitive data
object into a
“Wrapper” class?

N
Does the Wrapper
class have the
message that I
need?

Y
Wrap the object
and send the
message

Y

Now what????

N

N

Will I need to
change it back?

What was
that type?

When
should I
cast it?

What was
that casting
syntax?

…

N

…

Figure 4: “What is the Message?” Java Decision Tree

Obviously, Java’s greater complexity requires more subroutining, and this extra subroutining will take more time and
be subject to more errors than a simple subroutine. And this is just the complexity of sending a single message to a
single object. It says nothing of reading pre-existing code – a necessary evil if any maintenance is required – where
you must decide if what you’re reading is an object, a primitive, a message, an operator, or one of those 59 reserved
words!

“Chunking” – Automatic Subroutining
In spite of the differences in relative complexity in Smalltalk and Java, I am not claiming that Java is so complex that
it will be impossible for anyone to ever become proficient in the language! We all know from experience that, given
sufficient time any thinking process – even a complex one – will become automatic. How is this possible?

As Miller pointed out in his Magic Number 7, our short-term memories are limited to approximately seven items only
if those seven items are unrelated. Learning is the result of what Miller calls “chunking”: relating previously
unrelated ideas in short term memory into one coherent “chunk” which can then be remembered as a unit. If we go
through the same subroutine enough times, our brains will create a pattern out of the subroutine, so that we can
eventually perform automatic subroutining. (These patterns are not unlike the popular “design patterns” of
programming: recognizable groupings and interactions of classes that form a higher level of abstraction than a single
class on its own.)

The problem with complexity is that the more subroutining a person must do, the slower will be the chunking
process, which means learning the language will take a lot longer. There are more branches to visit in the decision
tree, so each branch will be visited less often and each will be less likely to become part of a recognizable pattern, or
chunk. By contrast, given a simple or consistent paradigm, it will be easier and faster to chunk something, because
more things will chunk to the same pattern. A pattern that is used more often is more likely to be chunked.

Chess example? Example of chunking. A chess expert is more likely to chunk things he’s seen lots of times; no one
will chunk arbitrary chess layouts.

Furthermore, in a simpler language, it will be necessary to learn fewer total chunks to accomplish the same task.
Therefore, if two otherwise equal learners – one in Smalltalk and one in Java – have an equal amount of time to learn
their respective languages, each will create an equal number of chunks, but the complexity of Java will mean that the
Java learner’s collection of chunks will apply to less abstract problems (only a small subset of what could be
accomplished), while the Smalltalker’s collection of chunks will be more complete, more abstract, more powerful,
and able to be applied to broader issues. A Smalltalker, for example, will be able to spend more time thinking about
the modeling of the business domain while the Java programmer is still thinking about language constructs.

Graph 1 plots a Smalltalk programmer’s performance (i.e., the speed with which s/he can produce a given unit of
code, or the inverse of the number of mistakes s/he is likely to make) against a Java programmer’s performance for a
given amount of expertise (i.e., time to learn the language, number of chunks formed).

Expertise

Pe
rf
or
m
an
ce

Smalltalk
Java

Graph 1: Performance for Java and Smalltalk Programmers Over Time

What About Those Experts?
If a programmer can eventually learn either Smalltalk or Java and become proficient in either language, perhaps a
language’s relative complexity is only an issue in the learning stages. If so, perhaps the language’s complexity only
impacts training time and training costs. Once a programmer becomes an expert, doesn’t the graph level out to the
same ideal of “infinite expertise?” After expertise is achieved, aren’t all languages the same?

Actually, no.

In his famous study on cigar-rolling operators, [Crossman, 1959] showed that there really is no such thing as a
quintessential “expert.” As long as a person keeps performing the same task – even a task as seemingly trivial as
rolling a cigar – that person will keep improving his or her performance. S/he will continue to learn, continue to
“chunk”, make fewer mistakes, and become more efficient at the task. There is no such thing as infinite expertise; the
learning graph never levels off. If we were to extend Graph 1 out into time, it would look like this:

Expertise

Pe
rf
or
m
an
ce

Smalltalk
Java

 Graph 2: Continued Performance Improvement Over Time

Therefore, over time a Smalltalk programmer’s performance will continue to exceed that of a Java programmer with
the same amount of expertise. The Smalltalker will make fewer mistakes and produce results faster than the Java
programmer, and this productivity will affect the business’ bottom line. The Smalltalk program will have a shorter
time-to-market; the Smalltalker’s business will benefit from the quicker sale (or internal use) of the product; the
Smalltalker’s business will have won the competitive race to marketability.

Conclusion
I am not saying that the Java language does not have certain inherent advantages over other languages – even
Smalltalk. Java’s built-in security, its namespaces, and its web-enabling technology all afford it advantages for
certain applications. Furthermore, Java’s compiler checks will probably produce more robust code, with fewer
runtime errors, than the same code produced in Smalltalk – at least for the first test.

The question is whether a Smalltalker’s inevitably greater productivity in producing code will still provide enough
extra time to allow that Smalltalker to test and remove the runtime errors from his or her code – with time to spare for
adding extra functionality.

Similarly, Java’s complexity – the mechanics of the language, the myriad subroutining that one must do in order to
perform what in Smalltalk are the simplest of tasks – force the programmer to think about the language, and – just
possibly – to miss the purpose of the programming process: modeling the business domain. It’s not as easy anymore
to translate business objects into virtual objects, so perhaps when the programming ends, the programmer will have
stopped caring about the business objects, and will walk away only thinking about how complex the language is.

I will continue to learn more about Java because I enjoy challenges, because I find the language to be a great
improvement over many of the other non-Smalltalk object-oriented languages, and because I am curious about its

capabilities and limits. Even so, I will always enjoy using Smalltalk: for its simplicity, its beauty, it’s elegance and –
above all – for its productivity. Perhaps it’s not just an aesthetic issue after all.

